About seller
One of the major challenges faced with hidradenitis suppurativa (HS) is the variability in manifestations and treatment responses. Cazzaniga et al. (2020) conducted a cross-sectional study and latent class analysis to explain disease heterogeneity and formulate HS phenotypes. HS phenotypes might be useful for disease or treatment outcomes. Future studies should assess rater reliability and predictive validity for outcomes such as treatment response or disease progression.Epigenetic dysregulation and disruption of gene enhancer networks are both pervasive in human cancers, and yet, their roles in keratinocyte cancers are poorly understood. Utilizing patient samples, Yao et al. (2020) provide an initial framework for understanding the underlying mechanisms by integrating enhancer and transcriptional alterations that occur during the progression of basal cell and squamous cell carcinomas.Stratum corneum (SC)-derived biomarkers can provide relevant information on the skin's antimicrobial, physical, and immunological barriers. The SC is easily accessible, and collection by adhesive tapes (tape stripping [TS]) is robust and minimally invasive. Given its minimal invasiveness and simplicity, TS is particularly useful for studies in the pediatric population and when repetitive sampling over time is desirable, for example, in clinical trials. The palette of SC biomarkers is expanding in a wide variety of research areas, benefiting from advances in multiplex immunoassays and omics approaches, including proteomics, lipidomics, and transcriptomics. Although there is increasing interest in collecting SC samples, the lack of TS standardization hampers its broader implementation in research and clinical practice. In this article, we address the TS procedure as well as methodological challenges that should be considered in the development of an optimal sampling strategy.Many applications of lanthanides exploit their electron spin relaxation properties. Double electron-electron measurements of distances are possible because of the relatively long relaxation times of Gd3+. Relaxation enhancement measurements of distance are possible because of the much shorter relaxation times of other lanthanides. Magnetic resonance imaging contrast agents use the long relaxation time of the S-state Gd3+ ion, and NMR shift reagents use the fast relaxation of selected other lanthanides. Other than Gd3+ and the isoelectronic Eu2+ ion, spin relaxation of the lanthanides is so fast that their EPR spectra can be observed only in the liquid helium temperature range. In this chapter the EPR properties of each of the lanthanides is briefly summarized, with an emphasis on electron spin relaxation.Highly sensitive and selective detection of lanthanide ions is a major analytical challenge. In recent years, the use of DNA for this purpose has been pursued. For such highly charged cations, it is difficult to select their aptamers due to strong nonspecific binding. On the other hand, the use of catalytic DNA or DNAzymes has an advantage to overcome this problem, especially DNAzymes with RNA-cleaving activity. In this chapter, a few such DNAzymes are introduced and methods for in vitro selection of lanthanide-dependent RNA-cleaving DNAzymes are described in detail, including the selection protocols, the DNA sequences used, the characterization of selected DNAzymes and their conversion into biosensors. All of the experiments use only fluorophore-labeled DNA, and radioisotope labeling is completely avoided. The resulting DNAzymes can distinguish lanthanides from non-lanthanide metals, tell the difference between light and heavy lanthanides, and can be used together to discriminate individual lanthanides.The aqueous chemistry of scandium(III) is of emerging interest for biological applications, specifically in nuclear medicine, as radioactive isotopes of scandium are becoming more readily accessible. Lusutrombopag in vitro In contrast to other rare earths, Sc3+ has no d or f electrons, limiting characterization of corresponding coordination complexes to spectroscopic techniques that do not rely on the characteristic electronic transitions of f-elements or transition metal ions. Herein, we provide a comprehensive overview on characterization techniques suitable to elucidate the solution behavior of small and macromolecular complexes of the smallest rare earth.Yttrium-86 is a non-standard positron emitter that can provide dosimetry information prior to therapy with yttrium-90 radiopharmaceuticals and be used to follow biochemical processes. In this chapter, we discuss the production, purification and applications of 86Y for PET imaging. More specifically, 86Y radiolabeling is highlighted and protocols to determine the radiochemical purity of 86Y-DOTA and 86Y-DTPA are presented.Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enable sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living mammalian cells. LRET biosensors are polypeptides that consist of an alpha-helical linker sequence sandwiched between a lanthanide complex-binding domain and a fluorescent protein (FP) with two interacting domains residing at each terminus. Interaction between the terminal affinity domains brings the lanthanide complex and FP in close proximity such that lanthanide-to-FP, LRET-sensitized emission is increased. A recent proof-of-concept study examined model biosensors that incorporated the affinity partners FKBP12 and the rapamycin-binding domain of m-Tor (FRB) as well as p53 (1-92) and HDM2 (1-128). The sensors contained an Escherichia coli dihydrofolate reductase (eDHFR) domain that binds with high selectivity and affinity to Tb(III) complexes coupled to the ligand trimethoprim (TMP). When cell lines that stably expressed the sensors were treated with TMP-Tb(III), TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. Much larger signal changes (>2500%) and Z'-factors of 0.5 or more were observed when cells were grown in 96-well or 384-well plates and analyzed using a TGL plate reader. In this chapter, we elaborate on the design and performance of LRET biosensors and provide detailed protocols to guide their use for live-cell microscopic imaging studies and high-throughput library screening.